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Abstract

Texture zeros in the quark Yukawa matrices generally lead to precise and simple ex-

pressions for CKM matrix elements in terms of ratios of quark masses. Using the new

data on b�decays we test a particularly promising texture zero solution and show that

it is at best approximate. We analyse the approximate texture zero structure and show

it is consistent with experiment. We investigate the implications for the CKM unitarity

triangle, measurements at BaBar and BELLE as well as for the theories which invoke

family symmetries.

1 Introduction

The structure of quark and lepton mass matrices provides us with a rare insight into the physics

beyond the Standard Model which may directly probe the underlying theory at the gauge

uni�cation or Planck scale. While the quark mass matrices and the CKM matrix, V CKM ;

are intimately related, measurement of the eigenvalues of the mass matrices and the matrix

elements of V CKM is not suÆcient to determine the structure of the full mass matrix and

of the matrix of Yukawa couplings giving rise to them. Given this under-determination, the

phenomenological approach most often used is to make some assumption about this structure

and explore the experimental consequences for the V CKM
ij . A particularly promising starting

point assumes that there are anomalously small entries in the up and down quark Yukawa
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matrices - \texture zeros"1. These lead to relations for the V CKM
ij in terms of ratios of quark

masses which do not involve any unknown couplings and hence can be precisely tested. Various

texture zeros have been studied. For the case of symmetric mass matrices a systematic analyses

determining which combinations of textures involving 4, 5 or 6 zeros for the U , D matrices are

compatible with data was carried out in [1]. The main reason for looking for such texture zero

solutions is that they may shed light on physics beyond the Standard Model, for example the

presence of a new family symmetry relating di�erent generations.

The new generation of b-factory experiments has led to more precise measurements of the

CKM matrix elements that, together with the progress in understanding hadronic uncertain-

ties [2] and light quark masses, allows us to test texture zero structures to a greater precision

than has hitherto been possible. In this paper we will study the most promising structure

based on simultaneous zeros in the U and D mass matrices at the (1,1) and (1,3) positions. In

the additional hypothesis of equal magnitude of the (1,2) and (2,1) entries and of suÆciently

small (3,2) entry, this structure gives three precise relations between V CKM
ij and ratios of quark

masses, leaving only one CKM element undetermined. We �nd that the new experimental and

theoretical information suggests that (at least) one of the hypothesis leading to those precise

texture zero relations needs to be relaxed. The simplest possibility is that while the (1,3) ele-

ment is small it is non- zero so that the texture zero is only approximate. As a result one of

the relations, the texture zero prediction for jVub=Vcbj, is modi�ed, as is suggested by the new

precise data; the other two relations are less a�ected.

In the context of an underlying family symmetry this result is to be expected for the family

symmetry usually requires texture zeros to be only approximate and, in some cases, actually

predicts the order at which the approximate zero should be �lled in. For example, a very simple

Abelian family symmetry predicts the (1,3) element should be nonzero at a level consistent with

the new data while requiring the (1,1) element should be much smaller, preserving the remaining

two texture zero predictions.

Another possibility [3] is that the (3,2) entry in the down quark mass matrix is not as small

as the (2,3) entry (barring cancellations, the latter must be smaller than the (3,3) entry by a

factor O (jVcbj)). Such an asymmetry can also be easily achieved in the context of Abelian or

non-Abelian family symmetries and o�ers an intriguing connection with neutrino physics. A

sizeable (3,2) entry in the down quark mass matrix is in fact a generic prediction of a class

of uni�ed models of quark and lepton masses and mixings. In such models, a large leptonic

mixing angle accounting for the atmospheric neutrino anomaly originates from a sizeable (2,3)

entry in the charged lepton mass matrix. The GUT symmetry then forces the (3,2) element in

the down quark matrix to be of the same order of magnitude [4]. However we note that the

original symmetric structure can also lead, very naturally, to a large neutrino mixing angle [5].

Finally, the third situation leading to a correction to the texture zero relations is that the entries

1Strictly texture zeros can only apply at a single mass scale (the GUT or string scale?) and will be �lled

in by Renormalisation Group running. However, in general, such e�ects are very small and the texture zeros

persist to a good approximation at all scales.

2



(1,2) and (2,1) in the up quark mass matrix are not equal in magnitude. This can happen in

non uni�ed abelian models due to di�erent order one coeÆcients. We will not investigate this

possibility in this paper because it destroys one of the successful texture zero predictions (see

the discussion in Section 2 below). From this one sees that detailed tests of the texture zero

relations will help to identify the underlying family symmetry.

Our analysis does not take into account possible new physics contributions to the pro-

cesses constraining the CKM parameters. Such contributions might a�ect the experimental

determination of jVtd=Vtsj through modi�cations to B mixing and the CP -violating part of K

mixing (or both) and consequently a�ect the corresponding texture zero relation. However

we do not expect jVub=Vcbj to be similarly a�ected where the main uncertainty instead lies in

the hadronic modelling of charmless semileptonic B decays. Our analysis addresses the phe-

nomenological problem of the jVub=Vcbj prediction of texture zero structures and its remedies

and, as a consequence, most of our analysis would not be a�ected by new physics e�ects. Very

recent measurements of sin 2� from BaBar and BELLE [6] do raise the possibility of beyond

Standard Model contributions to CP -violation and therefore the quantitative �ts performed in

Sections 2 and 3 might be a�ected by supersymmetric contributions to K and B mixing. We

brie
y discuss how low values of sin 2� a�ect our analysis.

The paper is structured as follows. In Section 2 we present the experimental tests of the

texture zero predictions following from zeros in the U and D mass matrices at the (1,1) and

(1,3) positions. In Section 3 we discuss the implications for the mass matrices following from

the need to modify one of the texture zero relations. We develop a perturbative expansion

which allows us to identify the possible corrections to the texture zero predictions. In Section

4 we consider the implications of such structure for an underlying family symmetry and �nally

in Section 5 we present conclusions.

2 Tests of texture zero predictions

In what follows we assume that the o�-diagonal entries are small relative to their on-diagonal

partners so that one may develop a perturbative expansion for the CKM matrix elements

[7, 8, 9, 10]. This is a reasonable starting point because it immediately leads to small mixing

angles consistent with observation. We further assume here that there are texture zeros in the

(1,1) and (1,3) elements, that the (1,2) and (2,1) elements have equal magnitude and that the

texture is approximately symmetric ((3,2)�(2,3)). These assumptions lead to the texture zero

relations [1, 8, 11, 10, 12]

����VubVcb
���� =

s
mu

mc

����VtdVts
���� =

s
md

ms
(1)

jVusj = � =

�����
s
md

ms
� ei�

s
mu

mc

����� (2)
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Fixed Parameters

Parameter Value Reference

GF 1:16639 � 10�5GeV�2 [15]

MW (80:42 � 0:06)GeV [15]

fK (0:161 � 0:0015)GeV [15]

mK (0:497672 � 0:000031)GeV [15]

�mK (3:491 � 0:009) � 1015GeV [15]

j�Kj (2:271 � 0:017) � 10�3 [15]

�?2 (0:574 � 0:004) [16]

mBd (5:2792 � 0:0018)GeV [15]

�B 0:55� 0:01 [16]

mBs (5:3693 � 0:0020)GeV [15]

Table 1: Fixed Parameters.

We will prove that, quite generally, � is approximately the Standard Model CP violating phase

(for more restricted cases see [13, 14]).

Barbieri et al (BHR) [11] emphasized that these relations lead to a very tight determination

of the CKM unitarity triangle. In terms of the re-scaled Wolfenstein parameters, �� = c�,

�� = c�, c = (1� �2=2); the ratios jVubj=jVcbj and jVtdj=jVtsj are
jVubj
jVcbj =

�

c

q
��2 + ��2

jVtdj
jVtsj =

�

c

q
(1� ��)2 + ��2 (3)

In the context of the Standard Model, the measurable quantities which give information on

�� and �� are

(a) the ratio jVubj=jVcbj obtained from semi-leptonic decays of B mesons,

(b) �mBd and �mBs which are the mass di�erences in the B0
d � �B0

d, B0
s � �B0

s systems,

(c) j�Kj the parameter related to CP violation in the K, �K system, and

(d) sin 2� (� is one of the angles in the unitarity triangle) obtained from CP asymmetries

in various B decays.

2.1 Standard Model (SM) �t

In comparing the texture zeros with experiment we proceed in two stages. We �rst use the

latest data to �nd �, �� and �� and then compare the result with eq(3). Our procedure is

to construct a two-dimensional probability density for �� and �� [17] from the constraints of the

above measurements. Entering in the �ts are several parameters which have been well measured

and which we choose not to vary. These are given in Table 1. At present we have only an upper
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limit for �mBs and we employ the so-called `amplitude method' to include this information

into the �t[18].

Our �t assumes the Standard Model (SM) relations between the experimental measurables

and the CKM matrix elements. In a supersymmetric extension of the Standard Model we

expect that there will be corrections to these measurables; j�Kj is particularly sensitive to such
corrections. To allow for this possibility we carry out a separate �t in which the data on j�Kj,
together with that on sin 2� for which there are rather di�erent measurements, is dropped. The

mass di�erences �mBd, �mBs and sin 2� might also be a�ected by supersymmetry, especially

if the structure of squark mass matrices is determined by the 
avour symmetry accounting for

quark masses and mixings. We do not consider this possibility here.

The formulas used in the standard model �t are

�mBd = C�mBd
A2�6[(1� ��)2 + ��2]mBdf

2
Bd
BBd�BdS(x

?
t ); (4)

where C�mBd
=

G2

F
M2

W

6�2 . Here S(x?t ) is the standard Inami-Lim function [19] and f2BBB is the

product of the B meson decay constant and the B parameter analogous to BK in the K system.

�mBs = �mBd

mBs

mBd

�2
c2

�2
1

(1� ��)2 + ��2
; (5)

where

� =
fBs
p
BBs

fBd
q
BBd

: (6)

For the �K parameter we have

j�Kj = C�BKA
2�6��

h
��?1x?c +A2�4

�
1 � ���

�
��2 + ��2 � ��

�
�2
�
�?2S(x

?
t )

+ �?3S(x
?
c; x

?
t )] ; (7)

where C� =
G2

F
f2
K
mKm

2

W

6
p
2�2�mK

. The short distance QCD corrections are contained in the coeÆcients

�?i , which have been computed at the Next to Leading-logarithmic Order (NLO) in [20]. The

NLO calculation requires the use of the one-loop relation between the pole mass and the run-

ning mass mpole
i = m?

i

�
1 + �s(m?)

�
4
3

�
in the MS. The coeÆcients �?i have been evaluated at

�NLO
MS

=371MeV . All the starred quantities in Table 2 are given in terms of these quantities,

for example x?i = [m?]2=M2
W .

Finally the angles of the unitarity triangle are given by

sin 2� =
2��(1� ��)

��2 + (1� ��)2

sin 2� =
2�� (��2 + ��(��� 1))

(��2 + (1� ��)2) (��2 + ��2)

sin 2
 =
2����

��2 + ��2
(8)
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Fitted Parameters

Parameter Value Gaussian-Flat errors. Referen.

A 0:834 � 0:036 *

� 0:2196 � 0:0023 *

jVubjCLEO 32:5 � 10�4 (�2:9� 5:5)� 10�4 [21]

jVubjLEP 41:3 � 10�4 (�6:3� 3:1)� 10�4 [22]

jVcbj (41:0 � 1:6)� 10�3 [2]

BK 0:87 � 0:143 0:06 � 0:13 [16]

m?
c (1:3� 0:1)GeV *

m?
t (167 � 5)GeV *

�?1 1:38 � 0:53 [16]

�?3 0:47 � 0:04 [16]

�mBd (0:487 � 0:014)ps�1 [23]

fBd
q
BBd (0:230 � 0:032)GeV �0:025-�0:020 [2]

� (1:14 � 0:064) 0:04 � 0:05 [2]

�mBs > 15ps�1 at 95% C.L. [23]

sin 2� 0:41 � 0:17 [6]

sin 2� 0:47 � 0:16 [24]

Table 2: Fitted Parameters.The parameters marked with * have been computed here with the new

data from [15].

Using these expressions we carried out �ts to the parameters listed in Table 2 keeping the

well determined parameters listed in Table 1 �xed.

The results in the �� � �� plane of the �t are shown in Fig.1. The con�dence limits shown

correspond to 68%, 95% and 99%. In the experimental �ts (which assume the SM) the results

of jVub=Vcbj for both CLEO and LEP collaborations (see Table 2) were included. Although the

result from the CLEO collaboration is lower than the result from LEP , they are consistent

within one �. The combination of both, assuming a Gaussian distribution for the experimental

errors and a 
at distribution for the theoretical errors, gives a value of 0:087 � 0:010, which is

consistent with the PDG value of 0:090 � 0:025 [15].

As can be seen from Fig 1 the constraints on �� and �� would be considerably strengthened by

a measurement of �mBs, which presently has only a lower limit, and by an improvement in the

precision on sin 2�. We can see from Fig.1 this agrees within 2� with the the new value for the

parameter sin 2�=0:47� 0:16 (combining BaBar and Belle results with those from CDF and

ALEPH [24]). However there is a deviation at the 1� level which may be a hint for physics

beyond the SM.
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|Kε|
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Figure 1: The SM �t of Section 2.1 to jVub=Vcbj, �mBs (lower limit), �mBd, j�K j and the recent

result for sin 2�. The lines indicate the region of 1� and, in the case of sin 2�, also the 2� region,

demonstrating that the new value is still consistent with the rest of SM constraints within 2�. The

CL are at 99%, 95% and 68%.

2.2 Comparison with the texture zero predictions.

We are now able to compare the experimental results with the texture zero predictions of eq(1).

In Fig.2 we show the region in the �� � �� plane allowed by these relations together with the

various constraints following from the processes (a)-(d). In this �t we have taken symmetric

forms for the U and D Yukawa matrices with texture zeros in the (1,1), (1,3) and (3,1) positions.

Comparison with Fig 1 show that the predictions are hard to reconcile with the data, being

consistent only at greater than the 99% CL (for the case j�Kj and sin 2� are not included). Fig.2

shows that one of the reasons for the poor agreement is the measurement of
���Vub
Vcb

��� : Given the

fact the CLEO and LEP measurements di�er considerably it is of interest to consider whether

the discrepancy disappears if we use only the value for the CLEO collaboration. In fact we

�nd that this only marginally changes things. One may see that the signi�cant improvement

in the experimental measurements, particularly of
���Vub
Vcb

��� and the improved lower limit on �mBs,

strongly disfavour this promising texture zero scheme. As remarked before, this conclusion

holds in extensions of the SM too, since new physics e�ects might a�ect the mass di�erence

�mBs, but cannot alleviate the disagreement with Vub=Vcb.

Given this discrepancy, do we have to abandon the texture zero solution completely? In fact

we do not, as we now show. The problematic relation jVub=Vcbj =
q
mu=mc (and, to a lesser

extent, the other two texture zero predictions) depends on three assumptions.

� Texture zeros: the matrix elements Y13, Y31, Y11 are negligibly small both in the up

7



ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lower limit
sB m∆

dB m∆

|cb/Vub|V

|Kε|

)βsin(2

Figure 2: The �t for the relations jVtdj=jVtsj =
p
md=ms and jVubj=Vcbj =

p
mu=mc. The experi-

mental constraints + SM interpretation indicate that these relations are disfavoured.

(Y = U) and down (Y = D) sector. Actually, as mentioned above, the underlying theory

generating the texture zero is unlikely to guarantee a particular mass matrix element is

absolutely zero. Moreover an exact zero can only apply at a single mass scale for radiative

e�ects necessarily generate contributions to all the elements of the quark mass matrices.

� Small higher order corrections in the perturbative diagonalization of the up and down

quark mass matrices. The expected correction is of order 7% or less if jD32j � jVcbjjD33j
and becomes important for larger values of jD32j. Larger values of jD32j can arise in uni�ed
models in which a large leptonic mixing originates from the charged lepton sector. They

also arise in models with a texture zero in the (2,2) position and no cancellation between

down and up quark contributions to Vcb. In this case one has in fact jD23=D33j � jVcbj.
As a consequence, an asymmetry jD32=D33j > jD23=D33j is required in order to account

for the value of ms=mb = jD23=D33 �D32=D33j.

� jU12j = jU21j. This condition is usually met in uni�ed models. In the case of SU(5) models

for example, U12 and U21 are both generated by operators that can be written in the form

h�iT1T2H, where T1;2 are the tenplets of the �rst and second family containing the up

quarks, H is the up Higgs �veplet and � represents a (normalized) set of �elds whose vev

is SM invariant. The relation jU12j = jU21j follows unless h�i breaks SU(5). In the latter

case, SU(5) Clebsh coeÆcients will di�erentiate jU12j and jU21j, but often in a too violent

way, leading to an even worse disagreement with the Vub=Vcb prediction. Moreover, the

analogous operator in the down quark and charged lepton sector would spoil the successful

relationmdms=m
2
b � mem�=m

2
� . The condition jU12j = jU21j is automatically met in some

8



non-Abelian models [27, 26]. In any case we regard the phenomenological success of the

relation for jVusj given by eq(2) as a result that should be preserved.

In what follows we focus on the possibility that either the �rst or the second assumption is not

ful�lled. In the �rst case we still assume a symmetric structure for U and D and since in the

second case D is manifestly asymmetric, we refer to the these two scenarios as the symmetric

and asymmetric texture cases.

In particular, in Section 3.2 we study in detail textures with small but non negligible (1,3)

element. As we discuss there, the order at which this element arises is a characteristic prediction

of a family symmetry so determination of this element is a discriminator between various

candidate family symmetries. Moreover we show that, even if we drop the constraint of an

exact texture zero in the (1,3) position, two of the three texture zero predictions remain and

are in good agreement with the data. Finally we prove that the identi�cation of the phase � in

the expression for Vus, eq(2), is true in leading order even after allowing for a matrix element in

the (1,3) position. In 3.3 we consider the complementary possibility of an asymmetric texture.

3 Non-zero s13 : Perturbative Analysis

In this Section we use the notation of Hall and Rasin [8]. We start with the Yukawa matricesY

(Y=U or D) with the assumption that the entries in the Yukawa matrices have a hierarchical

structure, with Y33 being the largest. For the purposes of explaining the important aspects of

the analysis it is useful to �rst take Yij to be real and later consider how the analysis is modi�ed

by CP violating phases. The matrices Y can be diagonalized by three successive rotations in

the (2,3), (1,3) and (1,2) sectors (denoted by s23; s13 and s12 ):

0BBB@
eeY 11 0 0

0
eeY 22 0

0 0
eeY 33

1CCCA =

0BB@
1 �sY12 0

sY12 1 0

0 0 1

1CCA
0BB@

1 0 �sY13
0 1 0

sY13 0 1

1CCA
0BB@

1 0 0

0 1 �sY23
0 sY23 1

1CCA�

�

0BB@
Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

1CCA
0BB@

1 0 0

0 1 s0Y23
0 �s0Y23 1

1CCA
0BB@

1 0 s0Y13
0 1 0

�s0Y13 0 1

1CCA
0BB@

1 s0Y12 0

�s0Y12 1 0

0 0 1

1CCA : (9)

In terms of these angles the CKM matrix is given by

V =

0BB@
1 s12 + sU13s23 s13 � sU12s23

�s12 � sD13s23 1 s23 + sU12s13
�s13 + sD12s23 �s23 � sD12s13 1

1CCA ; (10)

where s23 = sD23 � sU23, s13 = sD13 � sU13 and s12 = sD12 � sU12.

9



It is straightforward now to see the origin of the texture zero relations eq( 1). From eq(10)

we see it is suÆcient to have [8]:

� jVubj
jVcbj = jsU12j and jVtdj

jVtsj = jsD12j which is obtained by:

js13j << jsU12s23j and js13j << jsD12s23j: (11)

This condition will de�ne how small the (1,3) element must be in the mass matrices to obtain

the (1,3) \texture zero" prediction. Notice that since the \13" rotations are performed after

the \23" rotations, what determines the size of the rotation s13 is the \e�ective" element ~Y13 in

eq. (16). As eq. (16) shows, ~Y13 depends not only on Y13 but also on the size of the Y21 element,

which is rotated in the (3,1) position by the right-handed quark rotation s0Y23. The size of the
Y21 element can be related to the light quark masses, so that the conditions (11) also de�nes

how small the right-handed rotation s0Y23 must be in order to obtain the texture zero prediction.

In addition we require

� jsU12j =
q

mu

mc
and jsD12j =

q
md

ms
which is obtained by:

j eY11j << j eY12 eY21eY22 j and j eY12j = j eY21j: (12)

This is the (1,1) texture zero condition together with the symmetry needed to obtain eq(1,2).

To proceed further we need to determine the mixing angles in terms of the Yukawa couplings.

To do this we assume the o� diagonal elements are small relative to the on-diagonal ones in

each step of the diagonalisation, leading to the perturbative relation for the small mixing angles

given by2

sY23 ' Y23
Y33

+
Y32Y22
Y 2
33

; s0Y23 '
Y32
Y33

+
Y23Y22
Y 2
33

sY13 '
eY13
Y33

+
eY31Y11
Y 2
33

; s0Y13 '
eY31
Y33

+
eY13Y11
Y 2
33

sY12 '
eY12eY22 +

eY21Y11eY 2
22

; s0Y12 '
eY21eY22 +

eY12Y11eY 2
22

(13)

The successive rotations produce elements

eeY 11 ' eY11 � eY12 eY21eY22 ; eY11 ' Y11 �
eY13 eY31
Y33

; eY22 ' Y22 � Y23Y32
Y33

; (14)

and eY12 = Y12 � Y13s
0Y
23;

eY21 = Y21 � Y31s
Y
23; (15)

eY13 = Y13 + Y12s
0Y
23;

eY31 = Y31 + Y21s
Y
23: (16)

2Actually this equation de�nes just how small the o� diagonal elements need be since successive terms in

the expansion should be well ordered.
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From this equation one may see that the contribution of terms involving elements below the

diagonal are suppressed by inverse powers of the heavier quark masses. For this reason they

are only weakly constrained by the CKM mixing angles, with the only possible exception of

the (3,2) element [3]. Returning to the condition eq(11) for the (1,3) texture zero prediction

we see that Y13 must be small. The condition on Y31 is much weaker due to the heavy quark

suppression. As we shall discuss the larger hierarchy in the up quark masses means that the

down quark contribution to the mixing angles dominates. Thus, to a good approximation the

requirement for the (1,3) texture zero prediction is

~D13 �
~U12D23

~U22
(17)

We are interested in what happens if this condition is not satis�ed. In this case, from eqs(10)

and (11), we have

jVubj
jVcbj �

�����
s
mu

mc
� s13
s23

�����
jVtdj
jVtsj �

�����
s
md

ms
� s13
s23

����� (18)

How is this analysis a�ected if Yij are complex? We discuss this in detail in the next Section

but the implications are easy to anticipate. The sequence of rotations in eq(9) will now be

interspersed with various diagonal rephasing matrices. This will change the above equations

introducing phases in various terms but cannot induce any new terms in Vij . However, it is clear

that even in this case eqs(11) and (12) are the correct conditions for yielding the predictions

eq(1). In turn this means that eq(18) remains correct although the terms proportional to s13
s23

may acquire di�erent phases in the two equations (see below). However this does not change

the conclusion about which texture zero prediction receives the dominant correction.

Note that the texture zero predictions are modi�ed in a de�nite way in that the prediction

for jVubj=jVcbj in general has a larger percentage change than that for jVtdj=jVtsj because the

mass hierarchy for the up quarks is larger than that for the down quarks while the correction

proportional to s13=s23 remains the same in both cases. This is just what is needed to correct

the disagreement we found when comparing experiment with the texture zero prediction. The

correction term to the ratio jVubj=jVcbj is

1� cU sin +
1

2
c2U (19)

where cU = s13
s23
=
q

mu

mc
and  is the relative phase between the two terms when the CP phase

angle � is 900 while the correction term to the ratio jVtdj=jVtsj is

1� cD cos +
1

2
c2D (20)

where cD = s13
s23
=
q

md

ms
. If we take jD13j

jD23j � 0:04 and  � �450 then we can easily get a 90%

increase, for example, to jVubj=jVcbj while a�ecting jVtdj=jVtsj by only about 10%.
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3.1 Inclusion of phases - General parametrization

Consider the Yukawa matrices for the case where U11 and D11 are both zero, i.e. just one

texture zero in each. From the arguments of Kosenko and Shrock [28] there would be then

be a total of eight unremovable phases. We may assign the eight phases as �U;D12 , �U;D13 , �U;D22

and �U;D23 so that all possible quantities which are invariant under re-phasing transformations,

e.g. U12D23U
�
22D

�
13 are not, in general, real { in accordance with the discussion of Kosenko

and Shrock. Having so many phases is unnecessary as far as the physics is concerned since

the CKM matrix elements computed from eq(10) in the heavy quark limit depend on only two

independent combinations of the eight phases. Using eqs(13-16) we have

Vus =
j ~D12j
j ~D22j

ei(�
D
12
��D

22
) � j ~U12j

j ~U22j
ei(�

U
12
��U

22
) (21)

i.e. jVusj depends on the phase �1 = (�U12 � �U22)� (�D12 � �D22). In addition we have

Vub =
j ~D13j
j ~D33j

ei�
D

13 � j ~U12j
j ~U22j

ei(�
U

12
��U

22
) j ~D23j
j ~D33j

ei�
D

23

Vtd = �j
~D13j
j ~D33j

ei�
D
13 +

j ~D12j
j ~D22j

ei(�
D
12
��D

22
) j ~D23j
j ~D33j

ei�
D
23 (22)

Thus the magnitudes jVubj, jVtdj depend on only the combinations �2 = (�D13��D23)� (�D12��D22)
and �1 � �2 respectively. As a result so must the Wolfenstein parameters � and � depend only

on the two phases �1 and �2. Moreover, evaluating the invariant J = ImfVcbVusV �
csV

�
ubg which

determines the magnitude of CP violation, we �nd

� / Im[J ] =
j ~D23j
j ~D33j

" j ~D23j
j ~D33j

j ~D12j
j ~D22j

j ~U12j
j ~U22j

sin�1 � j ~D13j
j ~D33j

 j ~D12j
j ~D22j

sin�2 +
j ~D12j
j ~U22j

sin(�1 � �2)

!#
(23)

For small jD13j, the �rst term is the leading one and if the sub-leading corrections were neg-

ligible, then the CP violating phase �CP would be just �1, the same phase which enters in

eq(2). In this case the phase �1 is simply related to the `standard' (i.e. PDG convention) of

the CP -violating phase, Æ by Æ = � � �1 � � where � is the angle appearing in the unitarity

triangle. The next leading correction is the second term, proportional to sin�2. Our proof that

the phase �1 which drives the CP -violating phase is the same one that appears in eq(2) follows

simply from the suppression of terms in the heavy quark limit and the equality of the (1; 2)

and (2; 1) elements. This generalizes the previous proof of this result [14, 13] which assumed an

Hermitian form for the mass matrices with texture zeros in the (1; 1) and (1; 3), (3; 1) elements.

Although any matrix can be made Hermitian by phase changes in general the texture zeros are

not preserved by such transformations so this is the most general starting point.

To summarize we have shown that it is suÆcient in a parameterization of the mass matrices

to retain two non-zero phases which we take to be �U12 and �
D
13, i.e. �1 = �U12 and �2 = �D13. Our

analysis requires �U12 � 900 which is the case of `maximal' CP violation for �xed quark mass

ratios (c:f: [14]).

12



3.2 Fit to the data: symmetric texture

We now turn to a �t to the data with a non-zero entry in the (1,3) position of the down

quark mass matrix. As we have discussed the �t to CKM matrix elements is in this case

insensitive to the matrix elements below the diagonal. For de�niteness we perform a �t making

the assumption that the mass matrix is symmetric. This corresponds to a speci�c choice for

the elements below the diagonal consistent with this \smallness" criterion. Of course, assuming

an Hermitian rather than a symmetric form for the mass matrices does not change the quality

of the �t.

Leaving aside a discussion of phases for the moment, the U and D Yukawa matrices have

the form

U=ht =

0BB@
0 b0�3 c0�4

b0�3 �2 a0�2

c0�4 a0�2 1

1CCA (24)

and

D=hb =

0BB@
0 b��3 c��4

b��3 ��2 a��2

c��4 a��2 1

1CCA (25)

where ht, hb are the t; b Yukawa couplings and the expansion parameters � and � will be chosen

so that the remaining parameters a; b; c; a0; b0 and c0 are all of O(1). This texture is similar to

the ansatz considered by Branco et al.[29].

In fact we can extend this parameterization to include charged lepton masses by choosing

the same matrix L (with the same parameters) for the charged leptons mass matrix as for the

down quarks except for the usual Georgi-Jarlskog [30] factor of �3 multiplying the (2,2) element.

This retains mb-m� uni�cation and also gives good predictions for the lighter generations of

lepton.

The small expansion parameters are determined immediately, since to leading order (all our

discussion is to leading order) we have

mc

mt
= �2

ms

mb
= ��2 (26)

Since the above texture should apply at the uni�cation scale, we have

� ' 0:05 �� ' 0:15 (27)

i.e. we see that � < �� and suggests � = O(��2). The coeÆcients b and b0 are also determined to

leading order since
mu

mc
= (b0�)2

md

ms
= (b��)2 (28)
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giving b ' 1:5 and b0 ' 1. So far the parameters are taken real but we now introduce phases

as discussed in Section 3.1. For the case of interest with a small (1,3) element only two phases

play a role in determining the physics, as discussed above. Here we assign a phase to each of

U and D by taking

b0 ! b0 ei� c! c ei (29)

Having chosen to attach a phase � to the (1,2) element of U; as discussed in section 3.1 the

one phase chosen in D should be attached to a di�erent element of D. We then expand all

the elements of the rotation matrices which diagonalize U and D in terms of � and ��, retaining

the leading terms only. The CKM elements are expressed in terms of these rotation matrix

elements (see [8] for example) which then allow leading order expressions for the V CKM
ij in

terms of our expansion parameters.

At this leading order, we have

Vus = b��� b0� ei� =) jVusj = � =

s
md

ms

(1 +O(�=��)) (30)

where � is the Wolfenstein parameter. The Wolfenstein parameter A �xes the value of jVcbj
and in our expansion

jVcbj = A�2 = a��2 +O(���4) =) A =
a

b2
: (31)

We are neglecting here the up quark contribution to jVcbj, which is justi�ed if the (2,3) elements

in the up quark matrix are indeed of order �2 as suggested by eq. (24). From a phenomenological

point of view, however, a larger size for those elements (e.g. of order �) is also allowed and

could lead to non negligible up quark contributions to Vcb.

Since the textures that we are discussing apply at the uni�cation scale rather than at low

energies, we must use values for mass ratios and CKM parameters appropriate to that scale.

For this it is convenient to introduce the parameter � = (MX=MZ)�h
2

t
=(16�2) � 0:7 and then

A(MX)

A(MZ)
= �

(ms=mb)(MX)

(ms=mb)(MZ)
= �

(mc=mt)(MX)

(mc=mt)(MZ)
= �3 (32)

Thus at the uni�cation scale we have A ' 0:58 or a ' 1:3 As discussed above, up to corrections

suppressed by inverse powers of the third generation masses, the phase � determines the sign

and magnitude of the CP-violating CKM phase. In the SM context, the observed CP violation

requires a near maximal phase, � � 900; so

Vub = c��4ei � iab0���2

Vtd = �c��4ei + ab��3 (33)
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which imply that, to leading order the Wolfenstein parameters which govern the size of Vub and

Vtd are given by

� =

 
b0�
b��

!2
+

��

ab
c cos � b0�

ab2
c sin 

� =
b0�
b��

� ��

ab
c sin � b0�

ab2
c cos (34)

For c small, the phase � ' +900 �xes the correct sign of the �rst (dominant) term in the

expression for � and maximizes CP violation for �xed quark mass ratios. In passing we note

that, to this order, the entire list of quark masses and CKM matrix elements do not involve a0

or c0 and so could take on any value of O(1) without a�ecting the physics. We can express the

perturbation to the canonical values for jVub=Vcbj and jVtd=Vtsj given by eq(1)

jVubj2
jVcbj2 =

mu

mc

 
1 � 2

c��2 sin 

ab0�
+

c2��4

a2b02�2

!
jVtdj2
jVtsj2 =

md

ms

 
1 � 2

c�� cos 

ab
+
c2��2

a2b2

!
(35)

The e�ect of �lling in the (1,3) texture zero of D can be more dramatic for jVub=Vcbj than for

jVtd=Vtsj since the correction to the latter is suppressed by �=�� �
q
mu=mc=

q
md=ms relative

to the correction to the former. We can get the desired phenomenological result of moving

jVub=Vcbj up towards the measured value around 0.09 while not unduly perturbing the value of

jVtd=Vtsj given by eq(1).

Parameter Value Referen.

Q 22:7 � 0:8 [25]

mu=md 0:533 � 0:043 [25]

mc=ms 9:5 � 1:7 [15]

Table 3: Values for the quark masses ratios and the parameter Q (de�ned in eq(36)) used for

the texture zero �ts.

Using the expansions of eqs(24,25) for the U and D matrices in terms of � and �� we carry

out a �t using information on the measured estimates for ratios of quark masses and CKM

matrix elements. The expansion parameters �, �� and the O(1) coeÆcients a, b, b0 and c are

determined via the expressions (26,28,30,31,34,35). We follow BHR in using the combination

Q given by

Q =
ms=mdq

1 � (mu=md)2
(36)

which is determined accurately from chiral perturbation theory. Additionally we can use the

ratios of the masses mu=md, mc=ms.
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Figure 3: Fit A of Section 3.2 (symmetric texture) to the measurements of jVub=Vcbj, �mBs, �mBd,

j�K j and sin 2�.

The resulting �t (Fit A) yields the values

�� = 0:15� 0:01 jbj = 1:5� 0:1 a = 1:31 � 0:14

jcj = 2:7� 0:10  = �240 � 30 (37)

where the values are given at the uni�cation scale.

Demanding a texture zero in the (1,3),(3,1) elements for a symmetric D matrix leads, in

particular, to too small a value for �� and there is a marked improvement in the overall description

of the data when this zero is �lled in, as can be seen by comparing Fig. 3 with Fig. 2.

That c � 3 means that the order of the (1,3) term is ambiguous and could be either O(��4)

or O(��3). 3 While the texture zero in D13, D31 does lead to the rather attractive result of eq(1)

the current experimental data, within the context of the Standard Model, favour perturbative

corrections as suggested by eqs(35).

We noted earlier (Section 2.1) that there is a potential disagreement in the SM �t to j�Kj,
�mBs, �mBd and the recent measurement of sin 2� = 0:41 � 0:17[6]. To quantify the impli-

cations of this, we perform a second version of Fit A (still using the texture of eqs(24,25)),

dropping the constraints of j�Kj, �mBs and �mBd. This is shown in Fig. 4. The e�ect is to

increase slightly the value of the parmeter c to 3:31 � 0:10 and the value of  to 60 � 30.

In Fig. 5 we show the resulting probability distributions for the quantities Vub
Vcb

, j�Kj, �mBs

and sin 2� compared to the corresponding experimental distributions.

3That c0 is quite undetermined means that a texture zero in U13, U31 is not ruled out.
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Figure 4: Fit A of section 3.2 (symmetric texture) to the measurements of jVub=Vcbj and sin 2�.

There is actually a further solution (Fit B) to the above equations where the phase � � �900
rather than +900 which corresponds to to b0 ! �b0 in eqs(34,35). In this case the �rst term in

the expression for � is no longer the dominant one and a larger value of c is needed to obtain

a positive value for �. Only the parameters c and  change from Fit A, and for Fit B we �nd

c = 8:45�0:33,  = �580�50. The result of Fit B is shown in Fig. 6 and comparing with Fig. 3

we see no di�erence in the quality of �ts A and B. This solution has the (1,3) matrix element

of the same order (O(��3)) as the (1,2) matrix element. In this case D13=D12 � D23=D22 � 1,

suggestive of a non-Abelian family structure.

3.3 Fit to the data: asymmetric texture

We now consider a �t to the data in which the texture zero relation jVub=Vcbj =
q
mu=mc

is modi�ed by higher order corrections in the perturbative diagonalization of the down mass

matrix. As in the previous section, the correction to that relation comes from a small but

non negligible rotation sD13 induced by a non zero element ~D13. Here, however, we assume that
~D13 is mainly induced by the rotation s0D23 used to diagonalize the 23 sector of the down quark

mass matrix, the initial value D13 being negligible (see eq. (16)). This situation is therefore

complementary to the one considered in the previous subsection, where ~D13 was mainly given

by the original entry D13 and the contribution to ~D13 proportional to s0D23 was assumed to be

negligible.

Let us �rst of all estimate how large s0D23 should be in order to give a signi�cant contribution

to jVub=Vcbj. We start from eqs. (18), that assume only jY12j = jY21j, Y11 = 0. The size of the
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Figure 5: One dimensional probabilities for the physical observables jVubj=jVcbj, j�K j, �mBd and sin 2�.

The probabilities in red (dark) correspond to the experimental constraints and the probabilities in

blue (light) correspond to the predictions of the texture with 13 and 31 entries di�erent from zero

with c = (2:7� 0:10) and  = (�24� 3)0.

correction is determined by sY13, which can be written as

sY13 =
~Y13
Y33

�
s
m1

m2

m2

m3
s0Y23 ; (38)

where mi is the mass of the quark of the i-th family in the sector Y = U;D and we have used
~Y13 = Y12s

0Y
23, Y12=~Y22 �

q
m1=m2 and ~Y22=Y33 ' m2=m3. From eq. (38) one can see that the

contribution of the up quark rotation sU13 to s13 = sD13 � sU13 is negligible. The mass ratios in

eq. (38) are in fact much smaller in the up sector than in the down sector. Moreover, the

factor s0Y23 in (38) appears in the product s0Y23s
Y
23, which contributes to the ratio m2=m3. Barring

cancellations, we therefore have s0Y23s
Y
23
<�m2=m3, a constraint stronger in the up sector due

again to mc=mt � ms=mb. Hence we can safely neglect sU13 and write

s13
s23

' sD13
s23

�
s
md

ms

ms=mb

jVcbj s
0D
23 : (39)

Since at the electroweak scale we have
q
md=ms � 0:22 and (ms=mb)=jVcbj � 0:6, in order to

get a correction s13=s23 � 0:03 (which gives a good agreement with data in absence of phases)

it is suÆcient to have s0D23 � 0:2 � 0:3, or jD32j � (0:2 � 0:3)jD33j. Larger values are also in

principle allowed depending on the phases in eq. (19). Notice that in �rst approximation the

ratio D32=D33 at the uni�cation scale is the same as at the electroweak scale.

Quark mass textures with jD32=D33j = O (1) have been considered in the literature [4] in

connection with a large leptonic mixing angle originating from the charged lepton mass matrix.
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Figure 6: Fit B of Section 3.2 (symmetric texture) to the measurements of jVub=Vcbj, �mBs, �mBd,

j�K j and sin 2�.

In SU(5) uni�ed models, the ratio jD32=D33j associated with the right-handed quark rotation

s0D13 corresponds in fact to the ratio of charged lepton mass matrix elements jE23=E33j associated
with a left-handed charged lepton rotation that mixes � and � neutrinos. On one hand, this link

can be considered as a motivation for studying asymmetric textures as a solution of the Vub=Vcb
problem. From the opposite point of view, we can say that in the context of uni�ed models, the

asymmetric solution of the Vub=Vcb problem, pointing at a largish value of jD32=D33j, indicates
that the large mixing angle responsible for the atmospheric neutrino anomaly comes, or at least

receives a signi�cant contribution, from the diagonalization of the charged lepton mass matrix.

The precise relation between the right-handed quark and left-handed lepton rotations de-

pends on possible Clebsh coeÆcients relating transposed down quark and charged lepton matrix

elements. The presence of non-trivial coeÆcients enhancing some charged lepton matrix element

is indeed suggested by the empirical relation m�=m� � 3ms=mb. Since a value of jD32=D33j
around 1/3 is preferred by a �t of data, a near to maximal lepton mixing can be obtained if

the Georgi-Jarskog factor 3 sits in the E23 entry.

Notice that a sizeable jD32j � jD33j=3 indicates an asymmetry jD32j � jD23j. The ratio

jD23=D33j is in fact expected to be of order jVcbj � 1=3, barring cancellations between up and

down quark contributions to Vcb. Such an asymmetry can be easily obtained in the context

of Abelian and non-Abelian models. In Section 4.2 we will describe an explicit example of

non-Abelian family symmetry leading to the asymmetry in the 23 sector while preserving the

relation jY12j = jY21j in the 12 sector and the texture zeros Y13 ' Y31 ' Y11 ' 0. This texture

allows us to isolate and study the corrections to the texture zero relations we are considering

in this section.
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To examine the implications of this scenario we modify the parameterisation of the Yukawa

matrices given in eqs(24, 25) by restoring the exact texture zeros in the (1,3) and (3,1) elements

and allow jD32j � jD23j.
We consider the following parameterisations for the mass matrices for the up and down

quarks whose absolute values can be parametrized as

jU=htj =

0BB@
0 c��0 0

c��0 ��2 b�

0 a� 1

1CCA (40)

jD=hbj =

0BB@
0 �0 0

�0 �� �

0 t 1

1CCA ; (41)

with �0 < � � 1. In this parameterisation of D we see, comparing with eq(25), we have

changed the (3,2) element to be O(1). The remaining elements are of the same order, � in

eq(41) being O(��2) and �0 is O(�3). The parameterisation of U has the same form as eq(24)

with the exception of the (2,3) and (3,2) elements which are now of O(�) and not O(�2). We

have chosen this form to relate to a promising texture model discussed in Section4.2. However

these elements are poorly determined by the data and it is possible to obtain solutions where

a; b are O (�), corresponding to the original symmetric parametrisation of eq(24).

In order to obtain the precise form of the corrected texture zero relations, we �rst write the

general expression for jVusj, jVub=Vcbj, jVtd=Vtsj in terms of the rotations de�ned by eq. (9):

jVusj =
��� tD12 � tU12e

i�1
��� cD12����VubVcb

���� =
���� tU12 � s13

s23
ei(�2��1)

���� (42)����VtdVts
���� =

���� tD12 � s13
s23

ei�2
���� ;

where tD12 and tU12 are the tangent of the 12 rotation of left-handed down and up quark re-

spectively. Written as above in terms of the tangent of the angles (and cosines cD12, c
U
12), the

expressions are exact up to O (�4) corrections, � being one of the Wolfenstein parameters. The

phases �1, �2 were discussed in Section 3.1. In order to obtain the relation between mixing

angles and quark mass ratios generalizing the texture zero relations, one has to express the

angles in eqs. (42) in terms of quark masses. In the case of textures (41,40), we obtain

tU12 =

s
mu

mc

tD12 =

s
c
md

ms

�
1� 1

2
t2c

md

ms

�
(43)

s13
s23

= t

s
c
md

ms

ms=mb

jVcbj ;
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where t = jD32=D33j as in eq. (41). The parameter t represents the tangent t0D23 of the 23

rotation on the right-handed down quarks in eq. (9). Since we are considering the possibility

of a sizeable t, we do not approximate the cosine of that angle, c � 1=
p
1 + t2, with 1. As a

consequence we have, at leading order in �2 = O (md=ms),

tD12 '
s
c
md

ms
6=
s
1

c

md

ms
' t0D12 :

This is because the diagonalization of the 23 sector in the down sector not only induces an

e�ective (1,3) element, but also generates a slight asymmetry in the 12 sector: j ~D12j 6= j ~D21j
despite jD12j 6= jD21j. The expression for tD12 above also includes a next to leading correction

in �2 = O (md=ms).

Let us now turn to the numerical determination of the parameters entering the expressions

for U and D. Three of those parameters, t and the two phases �1, �2, can be determined

independently of the values of the others in terms of jVusj and ��, �� (as obtained from the SM

�t). This is possible since, for given values of the quark masses, eqs. (42,43) relate t, �1, �2
to jVusj and jVub=Vcbj, jVtd=Vtsj, and therefore to jVusj and ��, ��. More precisely, to get the best

values of t, �1, �2, we use the following procedure. First we calculate jVub=Vcbj, jVtd=Vtsj in terms

of ��, ��. Then, for any given value of the ratio t = jD32=D33j and of the phase4 �2 we recover

md=ms and mu=mc from eqs. (42,43) (the phase �1 is obtained, up to discrete ambiguities, from

the relation involving jVusj). Finally, we calculate Q, mu=md in terms of md=ms, mu=mc. We

can at this point perform a �t of Q, mu=md in terms of ��, �� for any given value of t and �2. The

quantities mc=ms, ms=mb, jVcbj, � involved in the relation between Q, mu=md and ��, �� are also

included in the �t. As mentioned before, using Q, mu=md instead of md=ms, mu=mc improves

considerably the quality of the �t, especially for small t (despite it requiring the inclusion of

the ratio mc=ms) [11]. We then obtain t = 0:3, �2 ' �0:2�, cos�1 ' 0:1. Notice that �1 again

turns out to be almost maximal as was the case with symmetric textures.

The determination of t, �1, �2 described above depends on the additional parameters

in (40,41) only through the quark masses and jVcbj. As a consequence, the �t of all data

in terms of all parameters decouples into a �t of jVusj, ��, �� in terms of t, �1, �2 (which makes

use of the experimental values of the quark masses and jVcbj) and a �t of quark masses and jVcbj
in terms of the additional parameters. The �rst �t has been described above and is independent

of the speci�c form of the textures (41,40) and of the values of the additional parameters one

uses to account for the quark masses and jVcbj. For example, independently of whether the up

quark matrix is fully symmetric or not, the parameters a and b are of O(1) or smaller, �, � are

of O(1) or vanishing, provided that the values of the quark masses and of jVcbj can be accounted
for. All the dependence on the speci�c form of (40,41) is therefore con�ned to the �t of quark

masses in terms of the parameters �, �0, a, b, c, �, �. Here we consider in more detail such a �t

in the case motivated by the 
avour model described in Section 4.2 in which � = � = 0.

4To be precise, in order to include all sign ambiguities in a single phase we actually �x the value of the phase

�0

2
de�ned by cos �0

2
= cos �2, sin�0

2
= sin�2sign(sin�1). In the following, �2 should be read �0

2
.
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Let us start from the quark masses. Besides mt, mb, trivially accounted for by ht, hb, we

have to account for ms=mb, mc=mt, mdms=m
2
b, mumc=m

2
t . We work at the mt scale. In order

to account for ms=mb ' t � we need � ' 0:08. From mc=mt ' ab�2 we then have ab ' 0:6. Since

mdms=m
2
b = �02=(1 + t2)3=2, we can obtain �0 = 0:006. The ratio mumc=m

2
t = (c��0)2 then gives

c ' 0:5. Notice that all parameters that are supposed to be of O(1) indeed are. In particular,

we have jU23=htj � jU32=htj � jD23=hbj, which justi�es the use of the same parameter (�) in

both the U and D matrices. In the model of Section 4.2 the same parameter indeed appears in

those entries because the same vev generates them. Finally, we have to account for the value of

jVcbj, which has a contribution from the down sector, �, and one from the up sector, b �. Both

contributions are of the right order of magnitude, so it is clear that jVcbj can be obtained for

an appropriate choice of the O(1) coeÆcient b. The precise value of b depends on the relative

phase between the two contributions. For � = � = 0, the phases of the SM quark multiplets

can be rede�ned in such a way that U=ht and D=hb di�er from their absolute values in (41,40)

only by a phase ei� multiplying t in D32 and a phase ei multiplying b in U23. The phases �1
and �2 are then given by

ei�1 = ei( ��) (44)

ei�2 =
�
�
bei � 1

�
jVcbj : (45)

The relative phase between the two contributions to Vcb turns out to be ei and can be de-

termined from the equations above. We are actually interested to the value of b which simply

follows from eq. (45): b = jei�2jVcbj=� + 1j ' 1:4. We then also have a ' 0:4. Notice that a

and b are both of O(1) but b > a. This slight asymmetry is reduced by the running up to the

uni�cation scale.

The results for this �t with the asymmetric texture, D32 � D23 are very close to those for

the symmetric texture of 3.2 and the resulting contour plot in the �� { �� plane is essentially

identical to that in �g. 3.

4 Implications for a family symmetry

Of course the underlying motivation for studying the detailed structure of the quark and lepton

mass matrices is that they may lead to an insight about the structure beyond the Standard

Model. Here we brie
y comment on the implications of our analysis for such structure con-

centrating on the possibility there is an extension of the symmetries of the Standard Model to

include a family symmetry.

4.1 Symmetric case

It turns out to be remarkably easy to construct a model leading to the mass matrices in

eqs. (24,25) through the introduction of an Abelian gauge symmetry, U(1) (such additional
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Qi uci dci Li eci �ci H2 H1

U(1)FD �i �i �i ai ai ai �2�1 �2�1

Table 4: U(1)FD symmetries.

symmetries abound in string theories). The most general charge assignment of the Standard

Model states is given in Table 4. This follows since the need to preserve SU(2)L invariance re-

quires (left-handed) up and down quarks (leptons) to have the same charge. This together with

the requirement of symmetric matrices then requires that all quarks (leptons) of the same i-th

generation transform with the same charge �i(ai). If the light Higgs, H2, H1, responsible for the

up and down quark masses respectively have U(1) charge so that only the (3,3) renormalisable

Yukawa coupling to H2, H1 is allowed, only the (3,3) element of the associated mass matrix

will be non-zero as desired. The remaining entries are generated when the U(1) symmetry is

broken. A particularly interesting example may be constructed in a supersymmetric extension

of the Standard Model [31]. We assume this breaking is spontaneous via Standard Model singlet

�elds, �; ��, with U(1)FD charge -1, +1 respectively, which acquire vacuum expectation values

(vevs), < � >; < �� >, along a \D-
at" direction. After this breaking all entries in the mass

matrix become non-zero. For example, the (3,2) entry in the up quark mass matrix appears at

O(�j�2��1j) because U(1) charge conservation allows only a coupling cctH2(�=M2)�2��1; �2 > �1
or cctH2(��=M2)�1��2 ; �1 > �2 and we have de�ned � = (< � > =M2) whereM2 is the uni�cation

mass scale which governs the higher dimension operators. As discussed in reference [31] one

may expect a di�erent scale, M1 for the down quark mass matrices (it corresponds to mixing

in the H2, H1 sector with M2, M1 the masses of heavy H2, H1 �elds). Thus we arrive at mass

matrices of the form

Mu

mt
�

0BB@
h11�11�

j2+6aj
a h12�12�

j3aj
b h13�13�

j1+3aj
a

h21�21�
j3aj
b h22�22�

2 h23�23�
1

h31�31�
j1+3aj
a h32�32�

1 h33

1CCA (46)

Md

mb
�

0BB@
k11�11��j2+6aja k12�12 ��bj3aj k13�13 ��aj1+3aj

k21�21��b
j3aj k22�22��

2 k23�23��
1

k31�31 ��aj1+3aj k32�32��1 k33

1CCA (47)

where �� = (<�>
M1

)j�2��1 j, � = (<�>
M2

)j�2��1j, and a = (2�1 � �2 � �3)=3(�2 � �1). For �3a > 1

�a = �b = � and ��a = ��b = ��. In this case it is easy to check that there are no texture zeros

because all matrix elements contribute at leading order to the masses and mixing angles. For

1 > �3a > 0, �a; ��a change and are given by ��a = (<
��>
M1

)j�2��1j, �a = (<
��>
M2

)j�2��1j. In this case

texture zeros in the (1,1) and (1,3) positions automatically appear for small < �� >. However

the (1,2) matrix element is too large (cf Table 4). For a > 0 however ��a;b = (<
��>
M1

)j�2��1 j,
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�a;b = (<
��>
M2

)j�2��1 j, the texture zeros in the (1,1) and (1,3) positions persist, and the (1,2)

matrix element can be of the correct magnitude.

Note that the family symmetry does not make the small elements exactly zero so it predicts

only approximate texture zeros. Indeed, �xing the parameter a = 1 to obtain the measured

magnitude of the (1,2) matrix element one �nds that the (1,1) elements occurs at O("8) and

O(��8) for the up and down mass matrices respectively. This is so small that eq(2) is valid to a

high degree of accuracy if �12 = �21. On the other hand the (1.3) matrix element is predicted

to occur at O(�4); O(��4) for the up and down matrices respectively and, as discussed above, a

term of this order (with a coeÆcient 2) is suÆcient to correct the prediction for
���Vub
Vcb

��� following
from the assumption of an exact texture zero.

However the best �t prefers the (1,3) element to occur at O(�3); O(��3); i.e. close to the

(1,2) matrix elements. Moreover the measured value of Vcb requires the (2,2) and (2,3) matrix

elements of the down quark mass matrices should be of the same magnitude, of O(��2): This is

in contradiction to the predictions of the Abelian family symmetry, unless one appeals to the

unknown coeÆcients of O(1): The most plausible way to get such relations for matrix elements

involving di�erent family members is to invoke a non-Abelian family symmetry [5].

4.2 Asymmetric case

We now describe a supersymmetric non-Abelian model based on a U(2) family symmetry acting

on the two lighter families [27] and on the uni�ed gauge group SU(5). This model is a varia-

tion [32] which leads to asymmetric textures discussed in Section 3.3 with Y22 � 0. The lighter

families  a, a = 1; 2 ( = T; �F , where T and �F are respectively the 10 and �5 representations of

SU(5)) transform as  a ! Uab b under U 2U(2), whereas the third family and the Higgs �elds

H1, H2 are invariant. Such a symmetry is approximately realized in nature. In fact, in the U(2)

symmetric limit the lighter fermion families are forced to be massless and in supersymmetric

models their scalar partners are forced to be degenerate. The symmetry is broken by two SM

singlet scalars, an antidoublet �a transforming with UT�1 and an antisymmetric tensor Aab

transforming with UT�1 
 UT�1 under U(2). In an appropriate basis in the 
avour space, the

corresponding vevs can be written in the form

h�i =
 

0

V

!
hAi =

 
0 v

�v 0

!
; (48)

where V; v > 0. The correct hierarchy and mixing between the two lighter families is obtained

if v=V = O (jVusj). The U(2) breaking is communicated to the light fermions by an heavy

U(2) anti-doublet �a through a Froggatt-Nielsen mechanism. Under the gauge group, each �a,

a = 1; 2, transforms as a full fermion family, which allows a mixing with the light fermions. The

heavy mass termM�a ��a for the �elds �a also involves of course a doublet ��a with conjugated

tranformations under the SM and U(2) group. As for the size of the mass term, one simple

possibility is that the scale M is above the SU(5) breaking scale, M > MGUT. A small ratio
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V=M is then generated if the U(2) breaking takes place at the SU(5) breaking scale, V �
MGUT. Possible SU(5) breaking corrections to the heavy mass M will also be correspondingly

smaller. The small ratio V=M determines the small Yukawa couplings accounting for the second

generation masses and mixings, forbidden in the U(2) symmetric limit. In particular, the correct

order of magnitude for the mixing of the two heavier families is obtained if V=M � O (jVcbj).
Besides �a, ��a, representing the minimal choice for the messenger sector, the physics at the

GUT scale can involve additional heavy �elds. For example, we have mentioned in the previous

Section the possibility of a mixing in Higgs sector involving two heavy Higgs �elds H 0
1, H

0
2,

singlets in this case under the U(2) symmetry as H1, H2. Such a mixing can be used to account

for the hierarchy mb � mt. We therefore include H 0
1, H

0
2 in the model. Since they are allowed

to interact both with the light families and the U(2) breaking sector, the U(2) singlets H 0
1, H

0
2

can also mediate U(2) breaking. Notice that the scaleM 0 at which this singlet-mediation takes

place is a priori independent of the scale M associated to the doublet-mediation. For example,

if the mass of the heavy Higgses is set by SU(5) breaking we will have M 0 �M .

At this point one can write the most general renormalizable superpotential involving the

light fermions ( a,  3), the Higgs �elds (H1, H2), the U(2) breaking �elds (�a, Aab) and the

doublet (�a, ��a) and singlet (H 0
1, H

0
2) messengers. Once U(2) is broken, a mixing between the

previously massless fermions and the heavy messengers is generated. The new light fermions

can then be easily identi�ed by diagonalizing the heavy mass matrix. This leads to the following

textures for the up and down quark mass matrices:

D=hb =

0BB@
0 �0 0

��0 0 �

0 t 1

1CCA (49)

U=ht =

0BB@
0 c��0 0

�c��0 0 b�

0 a� 1

1CCA ; (50)

where � = O (V=M), �0 = O (v=M), t = O (V=M 0) and all other coeÆcients arise from couplings

of order one. One then obtains the textures (41,40) for the absolute values of the mass matrices

with � � � � 05. In particular, the relation jD12j = jD21j follows from the symmetry properties

of the U(2) representations6.

A few comments are in order. Since we expect jD23=D33j = O (jVcbj), the texture zero

in the (2,2) position requires t = jD32=D33j � jVcbj in order to account for the value of

jD32=D33 �D23=D33j ' ms=mb = O (jVcbj). We therefore expect a sizeable t� �, which leads to

a non negligible correction to jVub=Vcbj. From the model building point of view, the asymmetry

jD32j � jD23j corresponding to t� � can be simply accounted for by a relatively light singlet

messenger scale M 0 � M (which is analogous to the M1 � M2 assumption of the Abelian

5Unlike in eqs. (41,40), here the O (1) coeÆcients can be complex.
6A non negligible correction to jD12j = jD21j can arise if t = O (1) from the diagonalization of the kinetic

term.
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case). In fact, if this is the case, the leading contribution to D32 comes from the exchange of

the U(2) singlets H 0
1, H

0
2 at the scale M

0. As a consequence, jD32j turns out to be larger than

jD23j, which is generated by the exchange of the U(2) doublets �a, ��a at the higher scale M .

Moreover, H 0
1, H

0
2 transform as 5 and �5 of SU(5). Therefore, the singlet exchange at the lower

scale M 0 does not contribute neither to the (2,3) nor to the (3,2) element in the up quark mass

matrix, so that both U23 and U32 are of order �. The larger hierarchy mc=mt � ms=mb follows.

As for the further suppression of mumc=m
2
t with respect to mdms=m

2
b, that is automatically

acheived if Aab is a SU(5) singlet. The operator AabTaTbH vanishes in fact in this case due

to the antisymmetry of Aab. This is a generic appealing feature of U(2) models. In order

to generate a non-vanishing U12 entry, SU(5) breaking e�ects must be included either in the

messenger masses or through higher dimension operators, thus giving the extra � in U12.

5 Conclusions

The presence of texture zeros in the quark Yukawa matrices can constrain quite tightly the

detailed features of the CKM unitarity triangle. Recent data has shown that it is no longer

viable for s13 to be zero and are, as a result, inconsistent with the most promising texture zero

structure. This result seems quite reliable, following both from the improved bound on �mBs

as well as the improved value of jVub=Vcbj.
Theories invoking family symmetries beyond those of the standard model can lead to a

hierarchal structure for U and D in which the elements appear in the form �k, where � is a

small parameter. Motivated by such an expansion, we have explored a perturbative approach

in which the rotation s13 is small but non-zero. One way to do this is by allowing small entries

to replace some of the texture zeros. We have investigated a common symmetric form for U

and D where, in particular, the (1,3), (3,1) element is no longer zero. We have also investigated

an alternative possibility for generating s13 by allowing an asymmetric form for the (2,3), (3,2)

mass matrix elements. Both cases lead to a desirable phenomenological result whereby the

perturbation of the ratio jVub=Vcbj from the value
q
mu=mc is larger than that of jVtd=Vtsj fromq

md=ms.

On the theoretical side, we would hope that pinning down the allowed structures for the

Yukawa matrices will provide clues to the nature of an underlying family symmetry. Our

analysis shows that a perturbative expansion in terms a small parameter is quite successful

and therefore supports the idea that the family symmetry is spontaneously broken at the high

energy scale. This has a concrete realization in the Froggatt Nielsen mechanism where light and

heavy states are mixed via an extension of the `see-saw' mechanism. If we require the symmetric

form of the mass matrices it is necessary to have non-vanishing (1,3), (3,1) matrix elements.

This is an interesting result because it follows from speci�c Abelian (and non-Abelian) family

symmetries. Similarly the asymmetric solution can also be obtained from non-Abelian family

symmetries. Improvements in the measurements of the quark masses and CKM mixing angles
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and in particular on sin 2� ( as well as on sin 2�) should help in distinguishing between these

candidate symmetries and possibly lead to a viable theory of fermion mass generation.
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